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Abstract

Reinforcement Learning (RL) has emerged throughout the past decade as a prominent
method for training agents to solve complex tasks. Often these agents are trained with
extrinsic rewards, however in many real-world contexts extrinsic rewards are sparse or non-
existent. In cases where extrinsic rewards cannot be feasibly modelled, Curiosity Driven
Learning (CDL) in RL can leverage curiosity to generate intrinsic rewards for agents to learn
from. This paper introduces two components of CDL in RL, novelty-based and uncertainty-
based agents. Both methods are defined and explored throughout this paper through a
survey on modern, popular and emerging solutions to CDL in RL. CDL algorithms and
methods are analyzed and compared, where both utility, limitations and future research
are discussed. As a result, this work provides a deeper insight into intrinsically motivated
agents in existing literature alongside future CDL research that would benefit from future
investigations.

1. Introduction

In the past few decades reinforcement learning (RL) has emerged as a popular method for
training agents to perform complex tasks. In RL, agents learn by interacting with their
environment to receive rewards or punishments with the intention of training the agent
policy to maximise the cumulative rewards granted. Traditionally, the rewards presented are
extrinsic to the agent and specialised to the environment they are defined within. Previous
works demonstrate that the success of an RL agent is attributed to the density and shape of
the reward function present in their experiments. Designing a well-shaped reward function is
a notoriously difficult engineering problem, and often fails to extend in industrial scenarios.
In the real-world rewards extrinsic to the agent are often sparse or non-existent, making it
infeasible to construct a shaped reward function. Previous research into blind RL often relies
on agents receiving rewards by stumbling into a specified goal state, for instance through
random exploration, failing to extend into larger and complex environments (Amin et al.,
2021). An alternative to shaping extrinsic rewards is to supplement agents with dense
intrinsic rewards, those being rewards generated by the agent’s themselves not supplied
through the environment.

The intuition behind intrinsic reward shaping is to replicate human exploration and cu-
riosity within their environments in discovering novel states. Examples of intrinsic rewards
include developing upon the notion of “curiosity” where prediction errors are substituted
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Figure 1: Agent-Environment interactions for traditional RL models (left) and Curiosity
Driven Learning RL models (right)

as reward signals and “novelty” which discourages agents from re-visiting previously seen
states. The author’s of Pathak et al. (2017a), introduce the ideology of Curiosity Driven
Learning (CDL) in RL, where intrinsic rewards are provided to agents to encourage ex-
ploration and learning new skills to be applied in their current environment to reach new
states or transferred to unseen scenarios. Through this use of intrinsic rewards, CDL has the
potential to improve the quality of learning. By exploring its environment and discovering
new and interesting states and transitions, the agent can learn more about the underlying
mechanisms of its environment, which can lead to better predictions and control. This can
be particularly useful in complex and dynamic environments, where traditional RL struggles
to learn effectively. With the growing complexity of real-world problems, CDL presents a
solution to the limitations of extrinsic reward based models in RL.

The purpose of this paper is to provide a comprehensive survey which reviews mod-
ern CDL algorithms and heuristics proposed in RL. Specifically, the goal is to present an
exploration of existing intrinsically motivated CDL approaches in RL through identifying
their utility and limitations in addressing complicated RL problems in addition to insight
for future research. The survey will begin with a brief RL background into curiosity driven
RL, followed by an investigation into CDL models that are designed to reward “novelty”
and “uncertainty”. A comparison of the benefits and limitations of each proposed CDL
model will be investigated. Finally, a conclusion of our analysis and perspective into future
research will be presented.

2. Curiosity Driven Learning

In traditional RL, agents are designed to learn through interacting with their environment
and maximise the corresponding extrinsic rewards granted. In Figure 1, the left diagram
illustrates simply how at every time step t an agent will provide a state action pair (
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st, at )to receive a reward rt and observe the next state st+1 with the transition model
P (st+1|st, at). The Markov Decision Process (MDP) assumes that the transition model
P (st+1|st, at) depends solely on the current state action pair (st, at), where agents should
take the action at only based on their current state st. In the right diagram of Figure
1, the traditional RL architecture is separated into two components being the primary
feedback and inherit curiosity. The reward rt is separated into ret , representing the extrinsic
rewards provided by the external environment and rit representing the intrinsic rewards
of the internal environment. Extrinsic rewards are designed to be the primary feedback
provided by the external environment whereas intrinsic rewards are the modelled “curiosity”
of the agent from the internal environment. In Burda et al. (2018) the authors note that the
actions and state can be discrete or continuous, with the states themselves being able to take
on a multitude of complexities. For example, states can be represented as high-dimensional
visual observations ot such as pixels or states can be made compact in dimensionality
through being random feature representations presented by a convolutional neural network.
The representation of states will impact the complexity of the underlying RL problem,
where regardless of form the goal of an agent is to learn an optimal policy π to maximise
the expected rewards from their environment.

CDL techniques in RL enable researchers to address a plethora of challenging problems
presented in traditional RL systems. In traditional RL problems, agents rely on extrinsic
rewards ret to learn from their environment, often lacking or ultimately not being designed
to consider intrinsic rewards rit. They have been shown to work with a high degree of effi-
cacy when extrinsic rewards are explicitly and continuously given, however face adversity
converging to an optimal π when these rewards are sparsely or are not provided. One prob-
lem in RL is that models may require a large amount of compute to aggregate trajectories
τt = (st, at, rt, st+1) into a replay buffer potentially hindering the convergence to an optimal
policy. An additional problem faced by RL today is also designing a model that is able to
sample efficiently from high-dimensional observational inputs, such as pixel images (Savi-
nov et al., 2018a). The proven ability for CDL agents to extract impactful features from
high-dimensionality input with a limited emphasis on collecting trajectories is one of the
main reasons for the surge in CDL methods to address RL problems.

In the following sections we will survey RL literature that incorporates a variety of
designs in developing artificial curiosity. The proposed CDL agents are all designed to
solely consume intrinsic rewards rit, omitting any bias extrinsic rewards ret to enable an
investigation into the utility of these agents in real-world-like scenarios.

3. Intrinsic Motivation

The following sections will identify and analyse popular and emerging CDL based RL agents
from the past decade. The authors of Pathak et al. (2017a) describe that most formulations
of intrinsic rewards rit can be aggregated into two broad classes. The first class is “Novelty”,
where rewards are designed to encourage agents to explore new and “novel” states. The
second is “Uncertainty”, where rewards are designed to encourage agents to take actions
that minimise the error in the agent’s ability to predict the consequence of their own actions.
Throughout the following sections we will be investigating CDL models from both of these
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categories that aim to address the limitations of traditional RL problems, observing the
efficacy, efficiency and short-comings of each category.

3.1 Novelty-Based Curiosity

By designing novelty-based rewards encourages agents to explore novel states and learn new
behaviours within their environment. Traditionally this was done by keeping count of state
and action visitations directly measuring the novelty of a state, where intrinsic rewards
were designed to dissuade agents from re-visiting the same state frequently. For example,
multi-armed bandit strategies such as the Upper Convergence Bound (UCB) Auer et al.
(2002) and Thompson Sampling Agrawal and Goyal (2012) are examples of an agent being
incentivized to choose under-explored actions to explore their environment. A limitation
of this approach is that the state action pairs need to be discrete and countable, failing to
scale up towards a continuous domain. To address this problem, the author Bellemare et al.
(2016) proposed a count based exploration function where intrinsic rewards would be based
on the pseudo-count function

N̂t(s) =
pt(s)(1− p′t(s))

p′t(s)− pt(s)
, (1)

As opposed to the number of occurrences Nt(s) for a state s, where pt(s) and p′t(s)
(recoding probability) are respectively defined as pt(s) = P (St+1 = s|S1 = s1, · · · , St = st)
and p′t(s) = P (St+2 = s|S1 = s1, · · · , St = st, St+1 = s).

The author’s leveraged a reward function proportional to N̂n(s)
− 1

2 with rin = α(N̂n(s)+

0.01)−
1
2 (where α is a scaling hyper parameter). This reward function allowed the agents

to demonstrate an exploratory behaviour while allowing the authors to tune it’s degree
of exploration to the environment presented. In their experimentation it was discovered
that the intrinsic rewards presented in their Pseudo-Count algorithm resulted in significant
exploration performed in various Atari games Mnih et al. (2015). A limitation in their
approach however was that the agent did not assume the action space to be continuous,
with states being acquired directly from the games. In real-world scenarios the agents
should be designed to learn from high-dimensional input states such as through raw pixels
to extract valuable information. A constraint in their approach is the density model p may
become significantly expensive should the state dimension increase drastically, presenting
scalability issues in their design. Additionally, it is uncertain whether or not this approch
would perform well in a partially observable environment as all evaluation was done with
full observability into their environments.

To avoid the exploding density representation issues in the Pseudo-Count model, the
authors Savinov et al. (2018a) proposed that novelty can be measured through reach ability.
Given an encoded state e from a visual observation o, the estimated environment steps to
take from the experienced states stored in a memory buffer M to the given e can be used
to describe the degree of novelty for o. Thus, those observations which require substantial
efforts to reach will be given high intrinsic rewards for exploration

ri = α(β + C(M, e)), (2)

4



A Survey on Intrinsically Motivated Curiosity Driven Reinforcement Learning

where α and β are hyper-parameters, and C(M, e) ∈ [0, 1] represents the reachability of
e. In visually dynamic and noisy scenarios, exploration based models may become subjected
to the ”couch potato” issue where an agent may become overwhelmed in a state with a lot of
noise (Savinov et al., 2018b). This causes agents to remain static, as the underlying model
may be stuck trying to learn from the randomized noise present in the environment. The
reachability-based reward function was tested in visually rich 3D environments where agents
were shown to outperform other models in dynamic graphical scenarios with a plethora of
noise, evading the couch potato issue. Their utilization of encoding high-dimensional input
into a compact and learnable lower-level input enabled the reachability-based approach to
be effective at encoding high-dimensional input as opposed to the Pseudo-Count algorithm
proposed by Bellemare et al. (2016). A limitation of this method however is similar to the
Pseudo-Count model where it is uncertain whether or not it may perform well with partially
observability, as the model was evaluated with fully observable environments.

3.2 Uncertainty-Based Curiosity

In uncertainty based CDL, agents are designed to take actions to minimize error in their
predictions of the consequences of their results. In this way, uncertainty acts as a way
for agents to identify surprises from the consequences of their actions and take actions to
minimize the errors in their estimations.

One major challenge faced in RL is agents who can learn from an environment with no
extrinsic rewards present. Proposed by Pathak et al. (2017b), the Intrinsic Curiosity Model
(ICM) incentives agents to actively explore unseen states, where it encourages agents to
take actions towards states when it’s expected prediction of the consequence of it’s action
are different than what actually happens. Intrinsic rewards are generated by the ICM to
provide to the agent, where a feature model ϕ is utilized to extract high-dimensional input
from the input state, such as pixel images. An inverse model ât is then utilized to optimize
ϕ where a forward model ϕ̂ then leveraged to obtain the agent’s prediction of the next state.
The author’s jointly optimize the components of the ICM for it to extract meaningful state
representations. These representations are additionally shown to be robust to noise from
the input images, thus providing the intrinsic reward

rit =
α

2
∥ϕ(st+1)− ϕ̂st+1∥22. (3)

where α is a hyper parameter for controlling the degree of exploration exhibited by the
agent. In their evaluation on the VizDoom and Super Mario Brothers environments the
author demonstrate that ICM can sample efficiently directly when learning about their envi-
ronment from the raw pixel input. The author’s further demonstrate the model’s robustness
against noise in the VizDoom environment where the agent is able to successfully complete
the maze with noise present in it’s input. Furthermore, this is the first CDL model observed
throughout this study where it was possible for the agent to generalize learned results from
a transition in environments. This was observed in the level transition in the Super Mario
Bros games where the agent trained on one level was able to extend the mechanics of the
game it learned to other, never before seen levels. Though it has proven an immense level
of precision compared to the novelty-based CDL models we observed, one major limitation
exists in ICM’s vanishing rewards problem. Throughout their experiments, the authors ob-
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served the vanishing rewards problem, where intrinsic rewards would vanish during training
failing to encourage the agent to explore further. This was often observed in larger runs
where the longer it took the agent to reach a goal state the more vulnerable it was to ex-
periencing this problem. Additionally, in their results the authors observed different seeds
were able to cause the agent to fail to converge or generate undesirable results in training.

Addressing the vanishing rewards problem, Shyam et al. (2018) presents a Bayesian
active exploration algorithm, Model-Based eXploration (MAX), which leverages an ensem-
ble of forward models to plan in observing novel events. The author’s note that in Pathak
et al. (2017b)’s work the agent exploration methods developed were reactive, where an agent
learns through accidentally observing novelty in their environment to then be incentivized
to continue further exploration. The vanishing rewards problem is claimed to be caused
by ICM’s over commitment to exploring new states, causing the novelty of unseen states
to wear off over each time step. MAX is designed to engage in active exploration, where
the agent seeks out novelty through their own internal estimate of action sequences that
will lead to novel transitions. The MAX agent calculates the Jenson-Shannon divergence in
discrete environments and the Jensen-Rényi divergence in continuous environments of the
predicted space of distributions from the resulting one. The maximization of the resulting
novelty measure then governs the agent’s exploration incentives to pursue predicted actions
sequences which may yield the most novel transition states. The authors demonstrating
the superiority of MAX to other CDL models in the Half Cheetah, Ant Maze, Continuous
Mountain Car and Chain tasks. Overall, MAX was able to resolve the vanishing reward
problem seen in ICM by directing it’s exploration heuristic to sequences of actions it de-
termined uncertain towards. Limitations in MAX however is that the model makes the
assumption of the average utility of a policy being the average utility of the probable tran-
sitions when the policy is used. Encountering a subset of those transitions and training the
model can change the utility of the remaining transitions, as seen in the Chain experiments
MAX was susceptible to looping between pairs of uncertain states rather than visiting other
different uncertain states. Furthermore, MAX was also noted to being much more compu-
tationally demanding than the other CDL models it was compared against, as it trades off
computational efficiency for data efficiency.

4. Analysis

Throughout this survey we have been able to observe the ability novel-based and uncertainty-
based CDL models have in addressing challenging problems in RL. Both approaches are able
to address complexity issues in extrinsically trained RL systems, being able to leverage in-
trinsic rewards to explore and exploit their environments. Additionally, both approaches
were able to improve the efficiency of RL problems by reducing the dimensionality of input
and retrieving valuable results from them in learning the dynamics of their environments.
Furthermore, both approaches were able to present solutions which aided in minimizing the
computational resources needed in addressing their problems. Throughout our investiga-
tion we were able to experience how uncertainty based CDL models often required more
computational resources to remain effective in designing error predictability within their
environments. MAX and ICM both required large amounts of computational resources to
store their state action distributions in modelling uncertainty in their environments as op-
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posed to Pseudo-Counts and Reachability. These computational trade offs however enabled
uncertainty based CDL models to become more effective at addressing a wider range of ap-
plications within their environments while also being able to quickly converge. For instance,
both ICM and MAX were able to perform exceptionally well with high-dimensionality in-
put whereas Pseudo-Counts was unable to scale well with similar inputs. Furthermore,
all uncertainty models were able to perform in partially observable environments, whereas
novelty-based models were restricted to fully-observable models. In practice novelty based
CDL approaches seem to be much lighter weight requiring less computational resources and
could be used in larger scale real-world applications that may not require extreme preci-
sion of results but faster learning, such as real-time object detection. Uncertainty lends
itself better to lower-scale applications where meticulous results and optimal precision are
needed. For instance, automated game play testing to automate Quality Assurance tasks
may benefit from using uncertainty-based CDL models as their prioritization on uncertainty
may lend themselves to discover bugs in a company’s game. From initial surveys, uncer-
tainty CDL methods appear to be much more robust to noise or the couch potato problem
in high-dimensionality input as opposed to novelty-based models as well.

A few open problems within CDL that currently exist regard developing CDL models
that may assist in communicating and developing extrinsic rewards for environments that
previously provided no reward signals. For instance, being able to develop a model that may
be able to quantify and identify rewards of interest in an environment may assist researchers
in identifying quality issues in their tests. Furthermore, it may enable previously extrinsic
reward designed RL models to be extendable into sparse signal contexts.

5. Conclusion and Future Works

In this paper we provided an extensive survey into the applications of CDL in RL within the
past decade of research. The ability to explore environments without explicitly shaped ex-
trinsic rewards presents a major benefit to scaling CDL agents into real-world applications.
Curiosity mechanisms presented additionally demonstrated how agents were able to process
high-dimensional and complex inputs to efficiently explore their environments with limited
compute resource visibility. Finally we note that novelty and uncertainty based CDL mod-
els are able to address similar problems, with different approaches presenting various levels
of utility and limitations towards solving RL problems.

Research that may benefit from further investigation would be designing privacy bounded
CDL models in RL. In both novelty and uncertainty based CDL models, agents are re-
warded for their intrinsic curiosity of their environment, encouraging exploration as much
as possible. In real-world applications the privacy concerns of CDL may need to be further
researched and developed to prevent the development of agents which may gather sensitive
information from clients. In order for CDL models to be applied within real-world applica-
tions containing sensitive information, it is critical these agents be designed with privacy in
mind while being able to perform in information blocked / obfuscated contexts.
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