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Abstract

Data is power. This ability allows us to design machine learning and deep learn-
ing algorithms that aid us in nearly every aspect of life. However, research has
demonstrated that we can exploit this power and manipulate these algorithms
by introducing data anomalies. One such method is to employ data poisoning
attacks, which corrupt the data being used to train a model and influence system’s
infrastructure. The most recent of these types of attacks is the subpopulation data
poisoning attack, which allows the adversary to achieve maximum damage to the
intended target with minimal collateral damage to the overall model. In this paper,
we investigate the application of the subpopulation attack to NLP models. We
performed empirical analysis on three prominent Transformer-based Pre-trained
Language Models: BERT, XLNet and ELECTRA; demonstrating a high target
damage for all models. We then employ the poisoning availability defense TRIM
to determine subpopulation attack efficacy against defended models. Overall, we
found that the subpopulation attack was less effective against XLNet than it was
against BERT and ELECTRA.

1 Introduction

In this data age, scholars have designed advanced deep and machine learning systems to automate all
the complex tasks. These tasks can be broadly classified to computer vision and natural language
processing tasks. Computer vision tasks (use image as data source) include face recognition, object
detection, video rendering and so on. CNN models have shown great success in supervised computer
vision problems. Whereas, NLP tasks (use text and audio as data source) include emotion detection,
voice recognition, language translation etc. Given the sequential nature of the data, RNN have proved
to be more affective. With time, researchers have moved to generative models, which are more
extensive and provide better results. Now the question arises, Are these systems security reliable?
The answer to this is unfortunately no.

Over time, researchers have demonstrated that deep learning networks can be deceived by introducing
modest modifications to the input data. These kinds of attacks are referred to as evasion attacks, and
they have been extensively investigated in image classification Szegedy et al. [2013], Goodfellow et al.
[2014], Carlini and Wagner [2017] and speech recognition Carlini and Wagner [2018], Schönherr
et al. [2018]. As every firm in the world increasingly relies on data to power machine learning
systems, adversaries can now manipulate these data points via data poisoning attacks. As poisoning
assaults tamper with the machine learning infrastructure of these machine learning systems, their
unreliability increases.

In existing poisoning attacks, adversaries can inject corrupted, poisoned data during training to
produce a certain classification conclusion during inference. Existing poisoning attacks can be
categorised as follows: availability attacks Biggio et al. [2012], Xiao et al. [2015], in which the
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overall accuracy of the model is diminished; targeted attacks Koh and Liang [2017], Shafahi et al.
[2018], in which specific test instances are targeted for misclassification; and backdoor attacks Gu
et al. [2019], in which a backdoor pattern added to testing points causes misclassification. Poisoning
attacks differ in the amount of knowledge the attacker has about the ML system, including knowledge
about feature representation, model architecture, and training data, among others Suciu et al. [2018].

Literature-defined threat models for poisoning assaults rely on substantial assumptions regarding the
adversary’s capabilities. In both poisoning availability attacks Biggio et al. [2012], Xiao et al. [2015]
and backdoor attacksGu et al. [2019], the adversary must access a significant portion of the training
data (e.g., 10% or 20%) in order to impact the model at inference time. In addition, in backdoor
assaults, it is expected that the adversary has the capacity to modify both the training and testing
data to incorporate the backdoor pattern. In targeted attacks, it is assumed that the adversary knows
the exact locations of the target points during training, which is not always the case. Moreover, the
impact of a targeted attack is confined to a single site or a small group of points Koh and Liang [2017],
Shafahi et al. [2018]. This bridge between this category of attacks is eliminated by subpopulation
attack. This attack tries to maximize the damage for target test case, using minimum number of
examples while preserving the overall accuracy of the model. They achieve this without tampering
with the examples (use label flipping), in-turn making this type of attack, hard to detect and create
countermeasures.

Since, subpopulation attack is relatively a new attack, the work in efficacy and feasibility of this
attack has not been completed. Jagielski et al. [2020] design an effective threat model for this attack
and explore the effectiveness of this attack in computer vision field. In the NLP field they just use
BERT model Jagielski et al. [2020] on IMDB dataset to check the working of the attack, but no
work is done further than that. This research gap is exploited by us, we check the effectiveness of
subpopulation attack on different models, demonstrate how this attack is happening and check its
feasibility against common defence.

2 Related Works

Poisoning attacks against machine learning models is classified into availability, backdoor and
targeted attacks. Impactful research in above fields is discussed below.

Poisoning Availability Attacks: The concept of manipulating the training data of an automated
classifier in order to introduce errors in the final model has been the subject of numerous studies over
time. Attacks against polymorphic worm detectors Perdisci et al. [2006], network packet anomaly
detectors Rubinstein et al. [2009], and behavioural malware clustering Biggio et al. [2014] are among
the earliest studies in this field. Multiple models, including linear regression Xiao et al. [2015],
Jagielski et al. [2018a] logistic regression Mei and Zhu [2015], and SVM Biggio et al. [2012], have
been the subject of availability attacks based on gradient descent. These assaults aim to impair
the accuracy of the model without discrimination. Regarding defences, SEVER Diakonikolas et al.
[2019] use SVD to eliminate gradient-biased points, whilst TRIM Jagielski et al. [2018a] and ILTM
Shen and Sanghavi [2019] eliminate points with significant loss. These defences function sequentially,
finding and eliminating outlying spots at each stage until convergence is achieved. Demontis et al.
[2019] Demontis et al. examine the transferability of poisoning availability attacks.

Backdoor Attacks: While red-herring attacks Newsome et al. [2006] might be viewed as antecedents
to backdoor attacks, Gu et al. [2019] is recognised as the first backdoor attack against modern neural
networks. It involved producing poisoned data with a backdoor pattern to influence the model to
falsely classify additional backdoored testing points in order to identify a security risk with ML-
as-a-service models. Clean-label backdoor attacks presuppose that the adversary does not have
control over the labelling function Turner et al. [2019]. Other machine learning applications, such
as Federated Learning models, are susceptible to backdoor attacks Bagdasaryan et al. [2020]. In
order to guard against backdoor assaults, Tran et al. [2018] use SVD decomposition on the latent
space learned by the network to generate an outlier score. The Liu et al. [2018] algorithm combines
network pruning and fine-tuning. Wang et al. [2019] Identify poisoning by measuring the lowest
perturbation necessary to change inputs into a target class.

Targeted Attacks: Shafahi et al. [2018] present an optimization-based, clean-label poisoning attack.
Suciu et al. [2018] examine the transferability of targeted attacks. Schuster et al. [2020] demonstrate
targeted poisoning attacks against NLP-related word embedding algorithms. Koh and Liang [2017]
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describe an influence-based targeted attack and provide an illustration of a targeted strike that
simultaneously affects many sites. Koh et al. [2019] analyse the efficacy of influence functions for
forecasting how models evolve while removing numerous points from a dataset. Witches’ Brew
Geiping et al. [2021] use a gradient matching loss in conjunction with several optimization strategies
to conduct targeted attacks that need little knowledge of the learner’s setup.

The subpopulation attack largely falls within the category of targeted attacks. A priori work selects
random target examples, whereas subpopulation attack does not. It uses FeatureMatch or Cluster-
Match algorithm Jagielski et al. [2020] to locate target subpopulations and generate poisoned data
relating to those targets (which helps us determine target damage).

3 Subpopulation Attack

As the name literally suggest this is the attack on subpopulation of a dataset. Before considering the
details of the attack a formal definition of subpopulation needs to be stated.

A subpopulation of a data distribution is a restriction of its input domain to a set of points which are
close to each other based on some distance function.

3.1 Threat Model

Akin to most poisoning attacks, the adversary’s objective is to introduce a small number of contam-
inants into the data used to train a machine learning classification model in order to add a desired
characteristic into the learnt parameters. We examine a realistic adversary that does not have access
to the victim model’s internal settings and, like availability poisoning assaults, cannot edit any data
point submitted to the victim model during testing. In addition, the opponent is unable to discern the
precise training data points and can only modify the training set by adding new points. This depicts
the scenario in which the attacker can only spread poisoned points, which are then compiled with a
huge number of benign points by the victim model’s developers to form the training set. However,
we let the adversary to have the computational resources necessary to train a model equivalent to
that of the victim, as well as access to a second auxiliary dataset Daux, different from the training
data D, sampled from the same distribution. We also permit the adversary to know the learner’s loss
function and architecture. The adversary is unaware of the victim’s model’s parameters and training
data Jagielski et al. [2020].

3.2 Attack Method

Figure 1: Overview of our subpopulation attack framework. The attacker has access to an auxiliary
dataset, from which it can determine vulnerable subpopulation by using either FeatureMatch or
ClusterMatch. Poisoning attack generation can be done by label flipping (where a point drawn from a
subpopulation with majority class c is added with label t ̸= c, or with attack optimization (starting
from label flipping, use either influence or gradient optimization for the final attack point).

The training data is equally divided in Daux and D dataset. The Daux is used to study the dataset,
examine target subpopulation and generate poisoned images. These poisoned images are then added
to the D dataset and final model is trained on this concatenated dataset. The subpopulation selection
is done using ClusterMatch algorithm and poisoning of images is done using label flipping method,
which are discussed in detailed below.
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3.3 ClusterMatch Algorithm

ClusterMatch algorithm eliminates the need for annotation by identifying subpopulations of interest
using clustering. By recognising natural clusters in the data, it is possible to compromise the model
for a particular cluster but not for others. Presented in Algorithm 1, in ClusterMatch the attacker
clusters and identifies the most vulnerable subpopulations using the auxiliary dataset Daux. Before
we can use ClusterMatch, there are some design considerations that must be addressed. We must
describe a clustering algorithm and a preprocessing function for the supplementary data. We begin
the preprocessing phase by utilising the representation layer of a neural network trained on Daux,
and then we apply a PCA projection. We utilise KMeans algorithm for clustering.

3.4 Label Flipping

We begin the production of poisoning attacks by adapting a common baseline procedure, label
flipping, to our environment. In poisoning availability attacks Xiao et al. [2015], label flipping has
been used to construct poisoning points with comparable feature values to legal data, but with a
different label. If the subpopulation size is m and the adversary employs a poisoning rate α relative
to the subpopulation, the adversary will add αm poisoned points, which should be negligible in
comparison to the size of the overall dataset. In label flipping attacks, these points are generated
by sampling m points that fulfil the Daux filter function and adding them to the training set with
a different label t than the original one c. We select a single label for the entire subpopulation in
order to optimise the loss at the poison point. Label flipping assures significant target damage, while
the filter function itself ensures minimum collateral damage - if the separation is strong enough, the
learning algorithm will be able to learn the poisoned subpopulation independently, without affecting
the rest of the distribution.

Overall, ClusterMatch is used on Daux to find the worst subpoupation, then αm examples are
poisoned using label flipping and finally model is trained on D ∪Dp.

4 NLP Models

There are many different types of models used for any natural language processing task, including the
task of text classification that is considered in this paper. The types of deep learning models for text
classification range from feed-forward networks to Transformers and everything in-between. Minaee
et al. [2021] includes an overview of each category of models.

In recent years, there has been a boom of large-scale Transformer-base Pre-trained Language Models.
Transformers [Vaswani et al., 2017] utilize self-attention mechanisms to enable parallel computation
and model how each word influences other words in the same input sequence. The parallelization
makes Transformers more efficient than previously used methods like RNNs and CNNs, which enables
the existence of very large pre-trained models that are trained on large amounts of text corpora. The
pre-training process is considered unsupervised or self-supervised learning and learns contextual text
representation. Further supervised fine-tuning is required to utilize the pre-trained model for specific
tasks, like text classification. Fined-tuned pre-trained models have become state-of-the-art models for
many natural language processing tasks.

We consider three Transformer-based Pre-trained Language Models. BERT [Devlin et al., 2019] is a
bidirectional autoencoding language model that is trained using the masked language modelling task.
It is very popular, having achieved state-of-the-art for a variety of text tasks, and is the basis for many
related models. XLNet [Yang et al., 2019] aims to combine the advantages of both autoregressive
and autoencoding models by using a permutation operation during pre-training. Empirical results
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Figure 2: Overall pre-training and finetuning procedure for BERT [Devlin et al., 2019]. Apart from
output layers, the same architecture is used for both pre-training and finetuning.

from Yang et al. [2019] shows that XLNet consistently achieves better results than BERT. Finally,
ELECTRA [Clark et al., 2020] introduces a novel approach to training that produces a model with
improved performance than other industry leading competitors while requiring a fraction of the
compute power. The authors Clark et al. [2020] demonstrate ELECTRA’s superior computational
performance against XLNet and BERT.

4.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is a multi-layer bidirectional
transformer encoder that uses self-attention. Most pre-trained language models that existed before
BERT were unidirectional, which restricted their effectiveness. BERT overcame the unidirectionality
problem by using a Masked Language Model (MLM) pre-training objective, also known as Cloze
[Taylor, 1953]. To prevent the model from trivially predicting the target word during bidirectional
conditioning, some percentage of the input tokens in the sequence would need to be masked. Now
the model’s task is to predict these masked tokens.

Pre-training for BERT consists of two unsupervised tasks. The first one is the masked language
model pre-training objective mentioned above, the second is next sentence prediction. Next sentence
prediction aims to capture the relationship between two sentences. When choosing sentences A and
B for each training example, there is a 50% chance that B is next sentence following A. The other
50% chance is that B is some random sentence. After pre-training is complete, the BERT model can
finetuned for downstream tasks. Figure 2 illustrates the pre-training and finetuning procedures.

One important note to consider is a problem referred to as pretrain-finetune discrepancy. This is due
to the use of artificial symbols such as ’[MASK]’ during pre-training. However, these symbols do not
exist in the real data used for finetuning, resulting in a discrepancy.

The popularity of BERT has been unmatched in recent years. It has become the basis for many new
models such as RoBERTa [Liu et al., 2019], ALBERT [Lan et al., 2019], DistillBERT [Sanh et al.,
2019], SpanBERT [Joshi et al., 2019], ELECTRA, ERNIE [Sun et al., 2019], and ALUM [Liu et al.,
2020]. Despite the large number of newer, much more performant related models, BERT is still often
used as a baseline model when comparing the efficacy of proposed MLM architectures.

4.2 XLNet

Transformer-based Pretrained Language Models can be split into two broad types, autoregressive
language models and autoencoding language models. Autoregressive language models estimate the
probability distribution of a text corpus by factorizing the likelihood into a forward or backward
product. This results in it being only trained to encode a unidirectional context, which is a disadvan-
tage as downstream finetuning tasks often require bidirectional context information. Autoencoding
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Figure 3: Overview of how XLNet [Yang et al., 2019] trains with the two-stream attention. (a):
Content stream attention. (b): Query stream attention. (c): Training with two-stream attention.

language models work differently. The most famous autoencoding language model is BERT, which
was introduced above.

Despite its popularity, BERT is not without disadvantages, it suffers from two main issues. The first
is the pretrain-finetune discrepancy mentioned earlier. The second is the inability to model the joint
probability as predicted tokens are masked in the input. Instead, BERT assumes predicted tokens are
independent of each other given the unmasked tokens, which is an oversimplification and results in
BERT not being able to capture high-order, long-range dependencies [Yang et al., 2019].

XLNet is a generalized autoregressive model that aims to combine the advantages of both autore-
gressive language models and autoencoding language models. To capture the bidirectional context
that autoregressive models are missing, XLNet maximized the expected log likelihood of a sequence
with regards to all possible permutations of a factorization order. Given a sequence of length T , there
exists T ! different orders to perform autoregressive factorization. As model parameters are shared,
information from the context is gathered from both sides, making the model bidirectional. As it
is an autoregressive model and does not rely on data corruption, XLNet automatically avoids the
disadvantages of autoencoding models.

To compute the representation necessary for the permutation language modeling object, a two-stream
self-attention schema is needed. XLNet utilizes two sets of hidden representations. One is the
context representation, which is analogous to the standard hidden states in Transformer. The context
representation encodes both the context and the content. The other is the query representation, which
only encodes the context and the position, but does not encode the content. Figure 3 provides an
overview of how XLNet trains with the two-stream attention.

Given that XLNet combines the advantages of both autoregressive language models and autoencoding
language models, we would expect better performance. Indeed, in Yang et al. [2019], it is shown that
XLNet consistently exhibits better performance than BERT in a variety of problems, including our
specific task of text classification.

4.3 ELECTRA

MLM pre-training methods, such as BERT, corrupt the input sequence by replacing a subset of tokens
with a masked token and then train a model to reconstruct the original tokens. While in practice they
present high quality results when transferred to downstream NLP tasks, a limitation of these models
is they generally require large amounts of computation to be effective.

Proposed by Clark et al. [2020], ELECTRA is a novel pre-training model that presents a sample-
efficient pre-training task called replaced token detection. Visualized in Figure 4, the author’s model
trains two transformer models representing a generator and discriminator. During training, instead
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Figure 4: An overview of the replaced token detection architecture proposed by ELECTRA [Clark
et al., 2020]. The generator can be any model that produces an output distribution over tokens, the
author’s utilized use a small masked language model that is trained jointly with the discriminator.
After pre-training, only the discriminator is fine-tune on downstream tasks, becoming the ELECTRA
model

of masking the input similar to BERT, ELECTRA corrupts the input sequence by replacing some
tokens with plausible alternatives sampled from the generator network. Then, instead of training a
model that predicts the original identities of the corrupted tokens, a discriminative model predicts
whether each token in the corrupted input was replaced by a generator sample or not. The heuristic of
omitting masked tokens from input sequences allows ELECTRA to alleviate the pretrain-finetune
discrepancy problem.

The author’s experimentation demonstrates their new pretraining task is more efficient than MLM
since the task is defined over all input tokens rather than a small masked subset. Their analysis
demonstrates the contextual representations learned by ELECTRA substantially outperform the ones
learned by BERT given the same model size, data, and compute. The efficacy and performance
superiority to BERT and XLNet are portrayed through their testing on popular NLP benchmarks.
Within their experimentation on the GLUE dev set. Wang et al. [2018] the author’s showcase
ELECTRA achieving a score of 89.5 compared to XLNet’s 89.1 and BERT’s 79.8 while only using
25% compute to train. Similarly, on the SQuAD 2.0 [Rajpurkar et al., 2018] benchmark, ELECTRA
presents a score of 91.4 compared to XLNet’s 90.7 and BERT’s 83.0 while consuming the same 25%
compute resources. Overall, ELECTRA is a popular MLM model similar to BERT, however has been
demonstrated to outperform both BERT and XLNet in practice while consuming significantly less
computation resources. For our experimentation, ELECTRA was selected to observe the impact of
subpopulation attacks present against other popular MLM models to determine if the results presented
by Jagielski et al. [2020] on BERT extend into other common architectures.

5 Experiments

In this section we will begin by providing a brief overview of the dataset, various models, environment
and hyperparameters used within our experiments.

We then explore the threat of the subpopulation attack on NLP models on our real world dataset.
With the rise of popularity of pre-trained models in NLP (BERT [Devlin et al., 2019], ELECTRA
[Clark et al., 2020], XLNet [Yang et al., 2019]) alongside the often high variance of data used
to train them, they provide a target of interest for subpopulation attacks. We first explore the
effectiveness of the label flipping attack in the transfer learning scenario, leveraging the ClusterMatch
algorithm for subpopulation selection. This initial exploration is done over three poisoning modalities
to demonstrate the generality and extensiveness of the attack. We then explore the scenario of
bolstering our three transfer learnt models with a NLP defense in order to explore the potency of
the subpopulation attack. We believe this depth of our experiments provides compelling evidence to
support that subpopulation attacks are a versatile and effective threat model for poisoning attacks
against NLP models.

Our attacks are evaluated using a similar generic approach proposed by Jagielski et al. [2020].
We partition our dataset into a training set D, auxiliary set Daux and a test set Dt with each set
dataset being disjoint. The adversary will be limited to having access to only Daux to generate
subpopulations, training a surrogate model for ClusterMatch. The adversary will then generate
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poisoned data Dp where the model will then be trained on the union of D ∪Dp. Target damage will
then be evaluated only on test points from Dt belonging to the target subpopulation.

5.1 Dataset

The dataset leveraged throughout our experiments is Stanford’s IMDB Reviews dataset Maas et al.
[2011]. IMDB Reviews contains 50000 reviews of popular movies left by users on the IMDB website
alongside accompanying review scores. The dataset is predominantly used for binary sentiment
classification, where a model is tasked with predicting whether or not a provided review is expressing
positive or negative sentiment. The dataset provides a separation of 25000 reviews for training and
25000 for testing, where in our experimentation we split the training set into 12500 points for D and
12500 for Daux.

5.2 Models

For our experiments we will be leveraging BERT, XLNet and ELECTRA. For all of these model’s
we will be fine-tuning all transformer blocks in addition to their classifiers. All models will be
trained on vectors of 256 tokens for 4 epochs with a learning rate of 10−5 and a mini-batch size of
8. All models will utilize the AdamW optimizer [Loshchilov and Hutter, 2017], all using the same
architecture and implementation from the Huggingface Transformers Library [Wolf et al., 2020].
BERT and ELECTRA are both composed of 12 transformer blocks whereas XLNet is composed of
24 transformer blocks. All model’s contain an additional linear layer to be used in classification.

5.3 Environment

Throughout all model’s training, subpopulation attack generation, execution and defense experimenta-
tion the same runtime environment was utilized. All experiments were performed on Google Collab,
leveraging a A100-SXM4-40GB GPU with 89.6 GB of RAM in the server. Due to the exceptionally
expensive computations required to execute the subpopulation attack, explained further in our limi-
tations section, our experiments restricted the number of clusters considered by ClusterMatch. For
each experiment 100 clusters were generated, with 30 being considered for experimentation. This
was done to align with the experimentation environment performed by [Jagielski et al., 2020] in their
investigation of BERT using the ClusterMatch algorithm with label flipping.

5.4 Attack Performance

To show feasibility and efficacy of the subpopulation attack on more NLP models, we apply the label
flipping attack on BERT, XLNet and ELECTRA. The attack is performed using ClusterMatch with
projection dimension of 10 for PCA and using KMeans for clustering. 100 clusters were found, of
which 30 were sampled to perform the attack on. Ideally, we would have liked to perform the attack
on all 100 clusters but was constrained by running time. The 30 cluster were chosen by sampling 10
clusters each at the lowest, medium, and highest confidence levels. Matching the experiments done in
Jagielski et al. [2020], we evaluated each model for poison rate to be 0.5, 1.0 and 2.0.

Table 1 shows the results of the worst 10 subpopulation clusters. It groups the target damage into
averages of the worst 10, 5 and 1 clusters. It also lists the worst collateral damage and average cluster
size. The clean accuracy is evaluated from a model trained on the clean training set D. Based on the
clean accuracy, we can see that XLNet is the most accurate model of the three, it is closely followed
by BERT and then ELECTRA. There is an overall trend of higher poison rate resulting in higher
target damage, which is expected. The exception to this pattern is the results from ELECTRA at
poison rate 1.0. This volatility of results is discussed later.

The attack on all models seems to be ineffective at lower poisoning rates, where the average perfor-
mance over the worst 10 clusters for poison rate 0.5 is 2.9%. The best performing model over the
worst 10 clusters is XLNet with target damage 3.7%. As the poisoning rate gets larger, the efficacy of
the attack significantly improves with the average performance over the worst 10 clusters for poison
rate 2.0 reaching 15.9%. The best performing model over the worst 10 clusters is BERT with a target
damage of 20.6%, however ELECTRA’s worst cluster achieves the highest overall target damage
at 52.8%. At the highest poisoning rate of 2.0, all three models were able to achieve a high target
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Table 1: Clean and target damages for fully trained models on the IMDB dataset that have been
attacked with Label Flipping using ClusterMatch. The worst 10, 5, and 1 subpopulations are
recorded over poisoning rates of 0.5, 1.0 and 2.0. The collateral damage is recorded from the worst
performing cluster on each poison rate. Cluster size refers to average size of cluster from the worst
10 subpopulations for each poisoning rate.

Model Poison Rate
(α)

Clean
Accuracy

Target Damage Worst
Collateral
Damage

Avg
Cluster

Size10 5 1

BERT
0.5

0.913
0.024 0.035 0.051 0.004 167.0

1.0 0.080 0.129 0.204 0.007 152.3
2.0 0.206 0.303 0.506 0.010 126.3

XLNet
0.5

0.934
0.037 0.051 0.071 0.003 127.4

1.0 0.060 0.080 0.098 0.006 121.3
2.0 0.184 0.244 0.291 0.015 123.7

ELECTRA
0.5

0.898
0.027 0.049 0.099 0.005 113.6

1.0 0.016 0.025 0.050 0.000 121.0
2.0 0.088 0.152 0.528 0.007 119.8

damage rate, the lowest being XLNet at 29.1%. This shows the feasibility and efficacy of the attack
on these NLP models.

Overall, collateral damage is very low at all poisoning rates. The highest collateral damage is 1.5%
for XLNet at poison rate 2.0, with majority of the worst collateral damages being under 1%. This
indicates that the subpopulation attack fulfills the goal of being concealed and advantageous to the
attack staying undetected.

Figure 5 and Figure 6 show visualizations comparing the clean XLNet and ELECTRA models with
ones attacked at poison rate 2.0 on the worst cluster. The top row plots the ground truth labels
while the bottom row plots the predictions determined by the models. In comparison with the clean
models that mostly predicted the target cluster accurately, the attacked model shows clear indication
of misclassification for the target cluster. The prominence of the misclassification is especially
noticeable on the attacked ELECTRA model. Despite the large number of points being misclassified
in the target class, the overall decision boundary is still clearly visible in the attacked models and
is similarly situated in comparison to the clean model. This supports the claim of a low collateral
damage rate and shows that the attack is extremely concealed.

The results for BERT and ELECTRA were relatively similar, while the target damage results for
XLNet was significantly lower. This is potentially related to the fundamental structure of the models.
BERT and ELECTRA are both autoencoding models using MLM pre-training methods. BERT
suffers from pretrain-finetune discrepancy, which ELECTRA avoids as the corruption of input
tokens replicates the fine-tuning of downstream tasks. Both models assume predicted tokens are
independent of each other given unmasked tokens. In contrast, XLNet is an autoregressive model
that considers bidirectional context. It does not suffer from the same deficiencies as BERT and
ELECTRA, which potentially indicates that the autoencoding nature of BERT and ELECTRA makes
them more susceptible to the subpopulation attack.

One important observation to note is the volatility of these results. It is very noticeable that the
target damage in the worst cluster is drastically different from the average of the worst 5 or worst
10 clusters. This indicates a large difference between the target damage of the worst cluster and
the remaining 4 or 9 clusters, the difference being a drastic decrease in the target damage. Another
example of this volatility is the abnormally low results from attack ELECTRA with poison rate 1.0,
those results did not fit the pattern that was observed throughout the rest of the results. This volatility
possibly stems from sampling 30 clusters instead of evaluating all 100 clusters. When sampling is
used, there is guarantee that the worst clusters were sampled nor any guarantees on the quality of the
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Figure 5: Clean XLNet model compared with one attacked at poison rate 2.0 on the worst subpopu-
lation cluster. The top row plots the ground truth labels while the bottom row plots the predictions
determined by the models.

Figure 6: Clean ELECTRA model compared with one attacked at poison rate 2.0 on the worst
subpopulation cluster. The top row plots the ground truth labels while the bottom row plots the
predictions determined by the models.
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Table 2: Target damages for fully trained models on the IMDB dataset that have been attacked with
and without using the TRIM defence. The attacks were performed on the worst performing cluster
with a poison rate of 2.0.

Model
Target Damage
without TRIM

Target Damage
with TRIM Difference

BERT 0.506 0.419 −0.087

XLNet 0.291 0.085 −0.206

ELECTRA 0.528 0.530 +0.002

clusters sampled. The ideal would be to evaluate all 100 clusters, but the computational power and
cost required limits our ability.

5.5 Effect of TRIM Defense

To explore the versatility and effectiveness of the subpopulation attack, we now investigate to what
extent existing defenses for poisoning attacks can be used to protect a model from subpopulation
attacks. Proposed by Jagielski et al. [2018b], the TRIM defense was designed to defend a model
from poisoning attacks by removing points with high loss from the training dataset. As seen in
Algorithm 2, the defense works iteratively by identifying and removing outlying points at each step
until convergence is reached. By detecting outlying points and removing them from the training
dataset, the authors Jagielski et al. [2018b] demonstrated TRIM’s effectiveness in restricting or
eliminating poisoning availability attacks on transfer-learned models they defended.

For this section we consider the scenario of applying the subpopulation attack against the TRIM
defense applied to all three of our models. Defenses for availability attacks ensure that poisoning does
not compromise a model’s accuracy significantly. The subpopulation attacks have been shown to have
a modest impact on model accuracy in the previous section, focused on a selected target subpopulation.
In theory, leveraging an availability attack defense for protecting against subpopulation attacks does
show promise against restricting the efficacy of the attack. Our TRIM defense is set up in the same
fashion used by Jagielski et al. [2020] in their investigation on BERT using a maximum iterative
count of T=5. For all defense evaluations we employ the worst 1 subpopulation from XLNet and
ELECTRA with poisoning rate = 2.0 to determine how TRIM may reduce target damage from the
attacked subpopulation.

We present the performance of TRIM’s defense at protecting against subpopulation attacks in Table 2.
We see against BERT and XLNet that TRIM is able to reduce the target damage experienced by
the subpopulation attack. On BERT we observe a 8.7% decrease in target damage with TRIM,
reflecting the same results observed in Jagielski et al. [2020]. An interesting observation is XLNet
experiencing the largest decrease in target damage with a 20.6% decrease, above double the impact
as seen on BERT. In Figure 7, the target subpopulation between the undefended XLnet and TRIM
defended XLNet is visually distinct. The major efficacy of the defense may be attributed to the target
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Figure 7: The predictions of the XLNet model (left) attacked with poison rate 2.0 on it’s worst
subpopulation cluster compared with the predictions of same attack applied to a TRIM defended
XLNet (right).

Figure 8: The predictions of the ELECTRA model (left) attacked with poison rate 2.0 on it’s worst
subpopulation cluster compared with the predictions of same attack applied to a TRIM defended
ELECTRA (right).

subpopulation (red points) being located farther from the decision boundary between positive and
negative data points. Though BERT and XLNet demonstrated the effectiveness of TRIM in reducing
target damage, ELECTRA demonstrates an opposite effect. On ELECTRA’s worst subpopulation for
poison rate = 2.0 we observed a 0.2% increase in target damage. Though a negligible difference, this
result illustrated a failure of defense observation theorized by the author’s of Jagielski et al. [2020]
where not all subpopulations are feasible to defend against. Within their discussions on defense
impossibility the authors noted that if the subpopulation attack can cause a bias towards the attack
class, it will be further exacerbated by the defense. Figure 8 illustrates this theory, where we observe
the increased target damage that had occurred when ELECTRA with TRIM was poisoned. The
shorter x and y range presented in the data points of ELECTRA compared to XLNet and BERT,
alongside the density of the poisoned points presented a bias towards the attack class. The tight bias
may have prevented TRIM from eliminating many outlier points, as the density of the subpopulation
diluted the loss experienced from the true positive labels within the same region. This evaluation of
TRIM demonstrates the efficacy of availability attack defenses against subpopulation attacks, while
further showcasing the limitations these defenses may inherit due to subpopulation selection.

6 Conclusions

Although the subpopulation attack was previously shown to be effective against BERT, no other NLP
models have been evaluated, making it hard to definitively claim that the subpopulation attack is
effective against NLP models in general. We performed empirical analysis of the subpopulation attack
on three prominent Transformer-based Pretrained Language Models: BERT, XLNet and ELECTRA.
Of these, BERT is an autoencoding model and the most widely-used. XLNet is a generalized
autoregressive model that captures bidirectional context. ELECTRA is an autoencoding model that
alleviates BERT’s pretrain-finetune discrepancy limitation.
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Table 3: Amount of time necessary to perform the subpopulation attack. Training time per epoch is
based on fully trained fine-tuning for 12500 examples and performed on an A100 GPU. Total attack
time is based on performing and evaluating the attack on 30 clusters with each attack using 4 epochs.

Model
Training

Time / Epoch
Total Subpopulation

Attack Time

BERT ∼ 2.5 minutes ∼ 30 hours

XLNet ∼ 3.5 minutes ∼ 42 hours

ELECTRA ∼ 2.0 minutes ∼ 24 hours

Our experiments found that XLNet is much less susceptible to the subpopulation attack in comparison
to the other two models that have comparable clean accuracy. Furthermore, XLNet was easily
defendable with TRIM, mitigating the attack target damage significantly. TRIM proved to be
ineffective or even counterproductive for BERT and ELECTRA. Although we were able to achieve a
high target damage to all three models, XLNet’s resilience to the subpopulation attack, and the ease
of defense, lends itself to invoking more investigation into the application of the subpopulation attack
on NLP models.

Furthermore, both BERT and ELECTRA, for whom the subpopulation attack was highly effectively
against, utilizes masked language modeling methods. The shared weakness against the subpopulation
attack potentially indicates that mask language modeling methods are naturally less resilient to the
subpopulation attack. We also found that ELECTRA was much more volatile during our experiments.
The results of poison rate α 1.0 for ELECTRA did not match the overall pattern we were observing
from the other results. ELECTRA was also the only model where the TRIM defense resulted in an
increase in target damage instead of a decrease.

To summarize, we made four contributions in this project. First, we performed empirical analysis on
three prominent Transformer-based Pretrained Language Models, further exploring the application of
the subpopulation attack to NLP models. Second, we obtained results showing the feasibility and
efficacy of the subpopulation attack on XLNet and ELECTRA, obtaining high target damage for both
models. Third, we showed that the TRIM defense was counterproductive for ELECTRA, but highly
effective against the subpopulation attack for XLNet. Lastly, we found that the subpopulation attack
was less effective against XLNet, an autoregressive model, than it was against the autoencoding
models BERT and ELECTRA.

7 Limitations and Future Work

Throughout our investigation the limitation of compute time and resources was often a challenging
issue. Presented in Table 3, every model sampled 100 clusters, computing 30 clusters to train on over
3 poison rates. With an average of ∼ 32 hours to train all models individually, ELECTRA’s compu-
tationally efficient architecture performed the best while still requiring ∼24 hours to complete the
complete subpopulation attack. This overhead cost of computation was minimizable during smaller
dataset testing early on in our experimentation. When applied to the much larger IMDB dataset it was
computationally expensive to our time and finances to run and re-iterate upon. Similar computational
restrictions on the BERT model in Jagielski et al. [2020] further supports this observation. Future
testing of the subpopulation attacks on NLP models would benefit from having much larger and
dedicated resources.

An additional limitation present in our results is extending our attack and attack defense to different
styles of sentiment classification datasets. Where IMDB was designed to address the binary classifi-
cation of sentiment, our results may have benefitted from running our experiments on multi-class
datasets, such as leveraging the Tweet Sentiment Extraction dataset. With larger compute resources
available it may be feasible to perform our experiments on a plethora of sentiment analysis datasets.

Furthermore, future research into subpopulation attacks against NLP model’s may benefit from
evaluation of a wider depth of MLM and autoregressive based transformers. This may enable a
deeper discussion into the vulnerability MLM models and autoencoding models may have against
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the subpopulation attack. Additionally, examining a wider breadth of NLP models, beyond the
transformer based models observed within our research, would extend insight into the impact
subpopulation attacks have on other NLP architectures. Overall, we believe the results presented in
our research presents a basis into observing further impacts subpopulation attacks have against NLP
models.
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